首页> 外文OA文献 >Low-rank sparse learning for robust visual tracking
【2h】

Low-rank sparse learning for robust visual tracking

机译:低等级稀疏学习可实现强大的视觉跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matrix learning problem. This low-rank sparse tracker (LRST) has a number of attractive properties. (1) Since LRST adaptively updates dictionary templates, it can handle significant changes in appearance due to variations in illumination, pose, scale, etc. (2) The linear representation in LRST explicitly incorporates background templates in the dictionary and a sparse error term, which enables LRST to address the tracking drift problem and to be robust against occlusion respectively. (3) LRST is computationally attractive, since the low-rank learning problem can be efficiently solved as a sequence of closed form update operations, which yield a time complexity that is linear in the number of particles and the template size. We evaluate the performance of LRST by applying it to a set of challenging video sequences and comparing it to 6 popular tracking methods. Our experiments show that by representing particles jointly, LRST not only outperforms the state-of-the-art in tracking accuracy but also significantly improves the time complexity of methods that use a similar sparse linear representation model for particles [1]. © 2012 Springer-Verlag.
机译:在本文中,我们提出了一种新的基于粒子滤波的跟踪算法,该算法利用了粒子(候选目标)之间的关系。通过将粒子表示为字典模板的稀疏线性组合,此算法利用了共同学习的粒子表示的固有低秩结构。这样,它将跟踪问题转换为低秩矩阵学习问题。这种低秩稀疏跟踪器(LRST)具有许多吸引人的属性。 (1)由于LRST自适应地更新字典模板,因此它可以处理由于光照,姿势,比例等的变化而引起的外观上的重大变化。(2)LRST中的线性表示法在字典中明确包含了背景模板和一个稀疏误差项,这使LRST能够分别解决跟踪漂移问题并具有强大的抗遮挡能力。 (3)LRST在计算上很吸引人,因为低阶学习问题可以作为一系列封闭形式更新操作有效解决,从而产生时间复杂度,该复杂度在粒子数量和模板大小上呈线性关系。我们通过将LRST应用于一组具有挑战性的视频序列并将其与6种流行的跟踪方法进行比较,来评估LRST的性能。我们的实验表明,通过联合表示粒子,LRST不仅在跟踪精度方面优于最新技术,而且显着提高了对粒子使用类似稀疏线性表示模型的方法的时间复杂度[1]。 ©2012年Springer-Verlag。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号